Theoretical studies of dissociative phosphoryl transfer in interconversion of phosphoenolpyruvate to phosphonopyruvate: solvent effects, thio effects, and implications for enzymatic reactions.

نویسندگان

  • Dingguo Xu
  • Hua Guo
  • Yun Liu
  • Darrin M York
چکیده

The conversion of phosphoenolpyruvate (PEP) to phosphonopyruvate (P-pyr) is catalyzed by PEP mutase via a dissociative mechanism. In this work, we investigate the uncatalyzed reaction using ab initio methods, density functional theory, and the semiempirical MNDO/d method. Comparisons of geometries and relative energies of stationary points (minima and transition states) with density functional results indicate that the semiempirical method is reasonably accurate. Solvent effects are examined using implicit solvent models, including the recently extended smooth conductor-like screening model. Due to the large negative charge carried by the system, solvation is found to drastically alter the location and energy of stationary points along the dissociative reaction pathways. The influence of substituting a nonbridging phosphoryl oxygen by sulfur (thio effects) was also investigated. Implications of these results for the enzymatic reaction are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotope effects on enzymatic and nonenzymatic reactions of phosphorothioates

O-phosphorothioate analogs of phosphate monoesters have long been used to probe kinetic and stereochemical aspects of phosphoryl transfer. Both uncatalyzed reactions in solution and enzymatic reactions have been studied, the latter most notably with alkaline phosphatase. Large thio effects, defined as the ratio of the reaction rate with a phosphate substrate over that of the corresponding phosp...

متن کامل

Smooth solvation method for d-orbital semiempirical calculations of biological reactions. 2. Application to transphosphorylation thio effects in solution.

Density-functional and semiempirical quantum methods and continuum dielectric and explicit solvation models are applied to study the role of solvation on the stabilization of native and thio-substituted transphosphorylation reactions. Extensive comparison is made between results obtained from the different methods. For the semiempirical methods, explicit solvation was treated using a hybrid qua...

متن کامل

Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis.

BACKGROUND Phosphoryl transfer, typically involving high energy phosphate donors such as ATP, is the most common class of biological reactions. Despite this, the transition state for phosphoryl transfer from ATP in solution has not been systematically investigated. Characterization of the transition state for the uncatalyzed hydrolysis of ATP would provide a starting point for dissection of enz...

متن کامل

Dissociative phosphoryl transfer in PEP mutase catalysis: structure of the enzyme/sulfopyruvate complex and kinetic properties of mutants.

The crystal structure of PEP mutase from Mytilus edulis in complex with a substrate-analogue inhibitor, sulfopyruvate S-pyr (K(i) = 22 microM), has been determined at 2.25 A resolution. Mg(II)-S-pyr binds in the alpha/beta barrel's central channel, at the C-termini of the beta-strands. The binding mode of S-pyr's pyruvyl moiety resembles the binding mode of oxalate seen earlier. The location of...

متن کامل

Conformational flexibility of PEP mutase.

Previous work has indicated that PEP mutase catalyzes the rearrangement of phosphoenolpyruvate to phosphonopyruvate by a dissociative mechanism. The crystal structure of the mutase with Mg(II) and sulfopyruvate (a phosphonopyruvate analogue) bound showed that the substrate is anchored to the active site by the Mg(II), and shielded from solvent by a large loop (residues 115-133). Here, the cryst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 28  شماره 

صفحات  -

تاریخ انتشار 2005